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1. Introduction and Motivation

For many scientific and engineering problems, interpolation of a given data set and
approximation of a function are indispensable. There are numerous methods for
interpolation and approximation, which form important topics in classical numeri-
cal analysis and approximation theory. The nature of the function to be used for
interpolation depends on the signal or image that the function is intended to model.
Smoothness and non-smoothness being one of the significant features sought for
the constructed interpolant, to address the interpolation of a more complicated
and irregular data set, Barnsley presented the concept of fractal interpolation func-
tion (FIF) [3]. It was further taken up by many researchers; see, for instance,
[4, 5, 14–16, 18]

In its basic setting, FIF is a continuous univariate function such that: (i) the
function interpolates a prescribed finite data set, (ii) the graph of the function is
a fractal (self-referential set) in the sense that it is a fixed point of the so-called
Hutchinson-Barnsley operator corresponding to a suitable iterated function system
(IFS), which is a standard framework for constructing fractals [13]. In an analytical
framework, FIFs are obtained as the fixed points of the Read-Bajraktarević (RB)
operators. Consequently, a FIF satisfies a self-referential equation, and the theory
of FIFs has become an ideal approach for the approximation of naturally occurring
functions. Differentiable FIFs supplement the classical smooth interpolation meth-
ods [9, 20]. The literature on FIFs is too vast, and therefore no effort is made here
to survey this topic. Instead, in what follows, we will focus on certain facts about a
few generalizations and a specific formulation of FIFs that have impacted our own
work in this thesis.

Let [a,b] be a closed bounded interval in R, and Y be a compact arc wise
connected metric space. In [22], Secelean proved that for a given countable system
of data (CSD) in [a,b]×Y, there exists a countable IFS whose attractor is the
graph of a function interpolating the given data. Henceforth, we refer to this as a
countable FIF to distinguish it from the traditional FIF by Barnsley, which deals
with a finite set of data points and which is based on the theory of finite IFSs.

The notion of the zipper, which is closely related to IFS, provides another
methodology to create fractals [2]. As the notion of FIF (based on IFS theory) has

1



garnered significant attention in interpolation and approximation theory, one is
prompted to ask whether an interpolation scheme based on the concept of zipper
can be developed. Recently, in [10], authors presented a univariate zipper fractal
interpolation function for finite data sets that encompass the standard affine FIF as
a special case. However, so far, there has only been a cursory treatment of the role
of zipper in approximation and interpolation theories.

During the literature survey, we observed that: (1) the notion of zipper has
been used for fractal interpolation resulting the so-called univariate zipper fractal
interpolation for a prescribed finite data set, (2) there have been attempts toward
bivariate versions of Barnsley’s theory of FIF. A gap in the literature as observed
after studying the above works is to find if a zipper fractal interpolation function
for a countable data set can be constructed. In the present work, Chapter 2 aims to
fill this gap. Similarly, the bivariate analog of FIF for countable data is hitherto
unexplored. An attempt is made in this direction in the first section of Chapter 3.

A main offspring of FIF - referred to as the α-fractal function - established
a close connection between univariate fractal interpolation and approximation.
The notion of α-fractal function, brought to the limelight by Navascueés [19],
provides a parameterized family of self-referential functions that interpolate a
given function at a finite number of nodes. Further, this family of functions
provides an approximation procedure in various function spaces [23]. Our specific
attention to the α-fractal function is due to its potential to connect the FIF with
other branches of mathematics, such as approximation theory, harmonic analysis,
and functional analysis.

In parallel or even prior to the development of the univariate α-fractal functions,
several works on bivariate and a few on multivariate FIFs have been reported in the
literature; see, for instance, [6, 7, 11, 12, 17, 21, 24]. On one hand, these studies on
the bivariate and multivariate FIFs have favored a more interpolation viewpoint. On
the other hand, these constructions are not general enough to provide a multivariate
analog of the α-fractal functions. We take up the study of a general framework to
construct multivariate FIFs, associated α-fractal functions, and the fractal operator
in various function spaces as the main focus of the thesis. This is motivated by the
need to connect multivariate FIFs further with the theory of approximations and
other branches of mathematics, with the α-fractal function formalism as a vehicle.

2



2. A Concise Description of the Research Work

The proposed thesis is divided into seven main chapters. The first two chapters
(after the introductory chapter) of this thesis aim to fill some gaps observed during
our literature survey on univariate and bivariate FIFs. As the title indicates, the
other chapters deal with the multivariate FIFs. We would like to stress that the
α-fractal function formalism of FIF and the associated fractal operator act as a
recurrent theme in all the chapters. The contents of the thesis are described briefly
in the following seven subsections, each of which represents a chapter in the thesis.

2.1 Introduction

The purpose of this chapter is to provide the essential background material, fix
notation and terminologies, and conduct a brief literature survey relevant to our
study in the subsequent chapters.

2.2 Countable Zipper Fractal Interpolation Functions

This chapter focuses on some developments in the theory of fractal interpolation of
countable univariate data using the notion of zipper. The results obtained here can
be seen as an extension of [10] to countable data sets and that of [22] to a more
general setting, namely, zippers.

Definition 1. Let (X,d) be a compact metric space and (Wi) i∈N be a sequence of

continuous maps from X into X. Furthermore, let N0 := N∪{0}, (vi) i∈N0 be a

convergent sequence in X with lim
i→∞

vi = v∞, and s := (si) i∈N be a binary sequence.

The system Z= {X;Wi : i ∈ N} is called a countable zipper with vertices (vi) i∈N0

and signature (si) i∈N ∈ {0,1}N if

Wi(v0) = vi−1+si, Wi(v∞) = vi−si ∀ i ∈ N.

Note: In what follows in this chapter and beyond, we shall use the notation X to

denote a complete or compact metric space. The actual space X may change from

one appearance to another.
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A nonempty closed (hence compact) set A ⊆ X is called an attractor of the

zipper Z= {X;Wi : i ∈ N} if it satisfies the self-referential equation

A =
∞⋃

i=1

Wi(A).

Consider a CSD
{
(xi,yi) ∈ R2 : i ∈ N0

}
such that the sequence of the first coordi-

nates is strictly increasing and bounded, and the sequence of the second coordinates
is convergent. Let x∞ = lim

i→∞
xi, y∞ = lim

i→∞
yi. Set I = [x0,x∞]. For each i ∈N, con-

sider an affine map, li : I → [xi−1,xi] := Ii, given by li(x) = aix+bi, satisfying

li(x0) = xi−1+si, li(x∞) = xi−si. (1)

Let us denote the Lipschitz constant of a Lipschitz continuous function h : I → R
by [h]L. Let J ⊂ R be a sufficiently large compact interval which contains the
sequence (yi) i∈N0 and y∞. Set

X= I × J. (2)

For i ∈ N, let αi : I → R and qi : I → R be arbitrary but fixed Lipschitz continuous
functions, α = (αi)i∈N, and

|||α|||
∞
= sup

i∈N
∥αi∥∞ < 1, sup

i∈N
[αi]L < ∞, sup

i∈N
[qi]L < ∞. (3)

Let Fi : I × J → J be given by

Fi(x,y) = αi(x)y+qi(x). (4)

Set
Wi(x,y) =

(
li(x),Fi(x,y)

)
(5)

Theorem 2.1. Consider the countable zipper Z = {X;Wi : i ∈ N} with vertices(
(xi,yi)

)
i≥0 and signature (si) i∈N given above in (1)-(5). Further, assume that

Fi(x0,y0) = yi−1+si and Fi(x∞,y∞) = yi−si for all i ∈ N. Then there exists a

unique continuous function gα
s : I → R such that gα

s (xi) = yi for all i ∈ N0, whose

graph is the attractor of the countable zipper Z.
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Definition 2. The function gα
s occurring in the previous theorem is referred to as

the countable zipper fractal interpolation function (CZFIF).

Remark 1. In view of Theorem 2.1 it follows that the CZFIF gα
s satisfies the

iterative functional equation

gα
s (x) = Fi

(
l−1
i (x),gα

s ◦ l−1
i (x)

)
∀ x ∈ Ii, i ∈ N. (6)

Further, gα
s (x∞) = y∞.

Let ∆ = {(xi,yi) : i ∈ N0} be a prescribed CSD. Consider a specific type of a
countable zipper

{
X;Wi(x,y) = (li(x),Fi(x,y)), i ∈ N

}
defined via

Fi(x,y) = αi(x)y+φ(li(x))−αi(x)b(x), (7)

where φ is a Lipschitz function interpolating ∆ and b is a Lipschitz function
interpolating the points (x0,y0) and (x∞,y∞). Consider the perturbed data set
∆̂ := {(xi, ŷi) : i ∈ N0}. Assume that J is sufficiently large interval to include the
ordinates of ∆̂ and the constant ŷ∞ = lim

i→∞
ŷi. We shall fix the same signature as in

the zipper for the original data ∆ = {(xi,yi) : i ∈N0}. Now we consider a countable
zipper

{
X;Ŵi(x,y) = (li(x), F̂i(x,y)), i ∈ N

}
defined through the maps li : I → Ii

as above and
F̂i(x,y) = αi(x)y+ φ̂(li(x))−αi(x)b̂(x), (8)

where φ̂ is a Lipschitz function interpolating ∆̂ and b̂ is a Lipschitz function
interpolating (x0, ŷ0) and (x∞, ŷ∞).

Theorem 2.2. (Stability) Let ∆ = {(xi,yi) : i ∈ N0} and ∆̂ := {(xi, ŷi) : i ∈ N0}
be two CSDs. Let gα

s be the CZFIF for ∆ generated by the countable zipper{
X;Wi(x,y) = (li(x),Fi(x,y)), i ∈ N

}
defined via (1)-(5) and (7). Assume further

that ĝα
s is the CZFIF corresponding to the data set ∆̂ generated by the zipper{

X;Ŵi(x,y) = (li(x), F̂i(x,y)), i ∈ N
}

defined through (1)-(5) and (8). Then we

have

∥gα
s − ĝα

s ∥∞ ≤ ∥φ − φ̂∥∞ + |||α|||
∞
∥b− b̂∥∞

1−|||α|||
∞

.
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Let gα
s be the CZFIF for the data ∆ = {(xi,yi) : i ∈N0} generated by the zipper{

X;Wi(x,y) = (li(x),Fi(x,y)), i ∈ N
}

, where the maps Fi are as given in (7). Let
Ti : X→ R, i ∈ N be defined by

Ti(x,y) = [αi(x)+ εiψi(x)]y+φ(li(x))− [αi(x)+ εiψi(x)]b(x)+ξiηi(x), (9)

where φ is a Lipschitz function interpolating ∆ and b is a Lipschitz function
interpolating the points (x0,y0) and (x∞,y∞). Furthermore, εi,ξi ∈ R satisfy 0 <

|||ε|||
∞

:= sup
i∈N

|εi| ≤ κ < 1, 0 < |||ξ |||
∞

:= sup
i∈N

|ξi| ≤ κ̂ < 1, and ψi,ηi are Lipschitz

functions such that |||α|||
∞
+ |||ε|||

∞
|||ψ|||

∞
< 1 and ηi(x0) = ηi(x∞) = 0.

It is easy to check that

Ti(x0,y0) = yi−1+si, Ti(x∞,y∞) = yi−si.

The function Ti can be treated as a perturbation of the function Fi. Let gα,ε
s,ξ

be the CZFIF for the CSD ∆ = {(xi,yi) : i ∈ N0} corresponding to the zipper{
X;(li(x),Ti(x,y)), i ∈ N

}
. The next results point to the sensitivity of the CZFIF

to the perturbation in the mapping of the zipper.

Theorem 2.3. (Sensitivity) Let gα
s and gα,ε

s,ξ be the CZFIFs for the data ∆ =

{(xi,yi) : i ∈ N0} corresponding to the zippers {X;(li(x),Fi(x,y)), i ∈ N} and

{X;(li(x),Ti(x,y)), i ∈ N} respectively. Then

∥gα,ε
s,ξ −gα

s ∥∞ ≤ ∥φ −b∥∞|||ψ|||
∞

(1−|||α|||
∞
)(1−|||α|||

∞
−|||ε|||

∞
|||ψ|||

∞
)
|||ε|||

∞

+
|||η |||

∞

(1−|||α|||
∞
)(1−|||α|||

∞
−|||ε|||

∞
|||ψ|||

∞
)
|||ξ |||

∞
,

where

|||ψ|||
∞

:= sup
i∈N

{∥ψi∥∞}< ∞ and |||η |||
∞
= sup

i∈N
{∥ηi∥∞}< ∞.

Let I = [x0,x∞] be a compact interval in R. Let us denote the space of all
real-valued Lipschitz continuous functions on I by Lip(I). Let f ∈ Lip(I), referred
to as the seed function or germ function. Suppose ∆= {x0,x1, . . .} be an ordered set
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of strictly increasing points in the interval I = [x0,x∞] such that sup i∈N0
xi = x∞.

We refer to ∆ as a partition of I. By a slight abuse of notation, let us write
∆ = {(xi, f (xi)) : i ∈ N0}. Next, let b : I → R be a fixed Lipschitz continuous
function such that b(x0) = f (x0) and b(x∞) = f (x∞). Following the terminology in
the literature on fractal interpolation, we call b as a base function. We may assume
b ̸= f to avoid trivialities. Furthermore, we consider the following special type of
maps Fi, i ∈ N defined on X.

Fi(x,y) = αi(x)y+ f (li(x))−αi(x)b(x).

Consider the countable zipper Z = {X;
(
li(x),Fi(x,y)

)
: i ∈ N} and apply the

countable zipper fractal interpolation method to the CSD ∆ above. The interpolant
obtained here is denoted by f α,b

s,∆ , which satisfies the functional equation

f α,b
s,∆ (x) = f (x)+αi

(
l−1
i (x)

)(
f α,b
s,∆

(
l−1
i (x)

)
−b

(
l−1
i (x)

))
, ∀ x ∈ Ii = [xi−1,xi].

Let us recall that f α,b
s,∆ (xi) = f (xi), ∀ i ∈ N and f α,b

s,∆ (x∞) = f (x∞).

Definition 3. The aforementioned fractal function f α,b
s,∆ is called (s,α)- zipper

fractal function associated to f with respect to the partition ∆ and base function b.

Let us choose b via an operator as follows. Suppose that L : Lip(I)→ Lip(I) is an
operator such that L( f )(x0) = f (x0) and L( f )(x∞) = f (x∞). Let b = L( f ). In this
case, the corresponding (s,α)-zipper fractal function will be denoted by f α,L

s,∆ or
simply by f α

s .

Definition 4. Let ∆, s, α and L be fixed. Associating each fixed f ∈ Lip(I) to its

fractal counterpart f α,L
s,∆ , we obtain an operator called the Fα,L

s,∆ -operator or zipper

fractal operator defined as follows.

F
α,L
s,∆ : Lip(I)⊂ C(I)→ C(I); F

α,L
s,∆ ( f ) = f α,L

s,∆ .

Further results in this chapter aim to analyze some fundamental properties,
such as closedness, relative closedness, closability, relative closability, and various
types of boundedness of the nonlinear zipper fractal operator defined on Lip(I).
Further, we shall extend this operator to C(I) using standard density argument.
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2.3 Countable Bivariate Fractal Interpolation Functions

In this chapter, we develop a fractal interpolation technique for bivariate countable
data lying on grids of a rectangle.

Consider a bivariate CSD ∆ = {(xi,y j,zi j) : i, j ∈ N0} ⊂ R3, where (i) the
sequences (xi)i∈N0 and (y j) j∈N0 are strictly increasing and bounded, (ii) the double
sequence (zi j) is convergent in the sense that limi, j→∞ zi j exists and it is finite, and
(iii) lim j→∞ zi j < ∞ for each fixed i ∈N0, and limi→∞ zi j < ∞ for each fixed j ∈N0.
For a bivariate CSD, we denote z∞∞ := lim

i, j→∞
zi j. Let x∞ := lim

i→∞
xi, and y∞ := lim

j→∞
y j.

Set I := [x0,x∞] and J := [y0,y∞]. Assume that K is a sufficiently large compact
interval containing the set {zi j : i, j ∈ N0}∪{z∞∞} and X := I × J×K.

For i ∈ N0, let si := 1+(−1)i

2 . Define τ : N×{0,∞} → N by τ(i,0) := i− 1+
si and τ(i,∞) := i− si. For i, j ∈ N, let ui : I → Ii := [xi−1,xi] and v j : J → J j :=
[y j−1,y j] be given by ui(x) = aix + bi and v j(y) = c j + d j, respectively. The
constants ai,bi,c j and d j are determined by the constraints

ui(x0) = si−1xi−1 + sixi, ui(x∞) = sixi−1 + si+1xi,

v j(y0) = s j−1y j−1 + s jy j, v j(y∞) = s jy j−1 + s j+1y j,

For every (i, j) ∈ N×N we consider the constants δi,λ j,αi j ∈ (0,∞). Suppose the
functions Fi j : X→ K are such that the following assertions hold:

limsup
i

δi = limsup
j

λ j = limsup
j

sup
i

αi j = limsup
i

sup
j

αi j = 0;

|||α|||
∞

:= sup
i, j

αi j < 1,

and, for every (x,y,z),(x′,y′,z′) ∈ X,

∣∣Fi j(x,y,z)−Fi j(x′,y′,z)
∣∣≤ δi|x− x′|+λ j|y− y′|,

∣∣Fi j(x,y,z)−Fi j(x,y,z′)
∣∣≤ αi j|z− z′|,

Fi j(xk,yl,zkl) = zτ(i,k),τ( j,l) ∀ k, l ∈ {0,∞}.

Define Wi j :X→X by Wi j(x,y,z) :=
(
ui(x),v j(y),Fi j(x,y,z)

)
. Then {X,(Wi j)(i, j)∈N×N}

is a CIFS.
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Theorem 2.4. Let us consider the CIFS {X,Wi j : (i, j) ∈ N×N} defined above.

Assume that for each (i, j) ∈ N×N, the function Fi j : X→ K further satisfies the

following matching conditions

1. for all i ∈N and x∗ = u−1
i (xi) = u−1

i+1(xi), Fi j(x∗,y,z) = Fi+1, j(x∗,y,z), ∀ y ∈
J,z ∈ K,

2. for all j ∈N and y∗= v−1
j (y j)= v−1

j+1(y j), Fi j(x,y∗,z)=Fi+1, j(x,y∞,z), ∀ x∈
I,z ∈ K.

Then there exists a unique continuous function g : I×J →R such that g(xi,y j) = zi j

for all i, j ∈ N0 ×N0, and the graph of g is the attractor of the CIFS defined above.

In order to explore some approximation theoretic aspects, we consider here a
special case of the countable bivariate FIF constructed previously. To this end, let
I×J = [x0,x∞]× [y0,y∞]⊂R2. We say that ∆= {xi : i∈N0}×{y j : j ∈N0}⊂ I×J

is a partition of I × J if the sequences (xi)i∈N0 and (y j)i∈N0 are strictly increasing
such that lim

i→∞
xi = x∞ and lim

j→∞
y j = y∞.

Let Lip(I×J)⊂ C(I×J) denote the set of all Lipschitz continuous real-valued
functions defined on I × J. Fix f ∈ Lip(I × J) and by a slight abuse of nota-
tion, consider the bivariate CSD ∆ =

{
(xi,y j, f (xi,y j)) : i, j ∈ N0

}
. Assume that

L : Lip(I × J) → Lip(I × J) is an operator satisfying the boundary conditions
L( f )(xk,yl) = f (xk,yl) for all k, l ∈ {0,∞}. Let K be a sufficiently large com-
pact interval containing the set { f (xi,y j) : i, j ∈N0} and X= I×J×K. For i, j ∈N,
define Fi j : X→ K by

Fi j(x,y,z) := α(ui(x),v j(y))z+ f (ui(x),v j(y))−α(ui(x),v j(y))L( f )(x,y),

where α : I × J → R is a Lipschitz continuous function such αi j = ∥α∥∞,Ii×J j :=
sup(x,y)∈Ii×J j

∣∣α(x,y)
∣∣ satisfy the conditions required in the above theorem.

Theorem 2.5. Assume that the partition ∆, scaling function α , and operator L are

fixed. Then corresponding to each f ∈ Lip(I × J), there exists a unique continuous

function f α
∆,L : I × J → R such that

9



1. f α
∆,L interpolates f at the points in ∆, that is, f α

∆,L(xi,y j) = f (xi,y j) for all

(xi,y j) ∈ ∆,

2. the graph of f α
∆,L is the attractor of the CIFS {X,Wi j : (i, j)∈N×N} defined

above.

Definition 5. The function f α
∆,L is referred to as the (countable bivariate) α-fractal

function associated to the germ function f , with respect to the parameters α, ∆

and L.

Definition 6. Let α , ∆ and L be fixed. The operator Fα
∆,L : Lip(I×J)⊂ C(I×J)→

C(I × J), defined by

Fα
∆,L( f ) := f α

∆,L,

which assigns to each f ∈ Lip(I × J) its self-referential counterpart f α
∆,L, is called

the α-fractal operator on Lip(I × J).

The subsequent parts of this chapter focus on studying the approximation and
operator theoretic properties of the bivariate fractal operator Fα

∆,L.

2.4 Multivariate Fractal Interpolation Function on Rectangular Grids

In this chapter, we demonstrate a general framework for the construction of multi-
variate FIF that is amenable to the α-fractal function formalism, as mentioned in
the introductory section.

Let n ≥ 2, ∆ =
{
(x1,i1,x2,i2, . . . ,xn,in,yi1i2...in) : ik ∈ ΣNk,0;k ∈ Σn

}
is a data set

such that xk,0 < xk,1 < · · ·< xk,Nk for each k ∈ Σn; n ≥ 2. For k = 1,2, . . .n, set Ik =

[xk,0,xk,Nk ] and Ω = ∏
n
k=1 Ik. To simplify the notation, for m ∈ N, we write Σm =

{1,2, . . . ,m}, Σm,0 = {0,1, . . .m},∂Σm,0 = {0,m}, and intΣm,0 = {1,2, . . . ,m−
1}. Furher, we shall denote by Ik,ik , the typical subinterval of Ik determined by the
partition {xk,0,xk,1, . . . ,xk,Nk}, Ik,ik = [xk,ik−1,xk,ik ] for ik ∈ ΣNk . For any ik ∈ ΣNk ,

let uk,ik : Ik → Ik,ik be an affine map satisfying

{
uk,ik(xk,0) = xk,ik−1 and uk,ik(xk,Nk) = xk,ik , if ik is odd,

uk,ik(xk,0) = xk,ik and uk,ik(xk,Nk) = xk,ik−1, if ik is even,
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∣∣uk,ik(x)−uk,ik(x
′)
∣∣≤ αk,ik |x− x′|, ∀ x,x′ ∈ Ik,

where 0 ≤ αk,ik < 1 is a constant. Let τ : Z×{0,N1,N2, . . . ,Nn} → Z be defined
by {

τ(i,0) = i−1 and τ(i,Nk) = i, if i is odd,

τ(i,0) = i, and τ(i,Nk) = i−1, if i is even.

Let X := Ω×R. For each (i1, i2, . . . , in) ∈ ∏
n
k=1 ΣNk , let Fi1i2...in : X→ R be a

continuous function satisfying the following conditions.

Fi1i2...in(x1, j1,x2, j2, . . . ,xn, jn,y j1 j2... jn) = yτ(i1, j1)τ(i2, j2)...τ(in, jn),

for all ( j1, j2, . . . , jn) ∈ ∏
n
k=1 ∂ΣNk,0 and

∣∣Fi1i2...in(x1,x2, . . . ,xn,y)−Fi1i2...in(x1,x2, . . . ,xn,y′)
∣∣≤ γi1i2...in|y− y′|,

for all (x1,x2, . . . ,xn) ∈ Ω and y,y′ ∈ R, where 0 ≤ γi1i2...in < 1 is a constant.
Finally, for each (i1, i2, . . . , in) ∈ ∏

n
k=1 ΣNk , we define Wi1i2...in : K → K by

Wi1i2...in(x1,x2, . . . ,xn,y) =
(
u1,i1(x1),u2,i2(x2), . . . ,un,in(xn),

Fi1i2...in(x1,x2, . . . ,xn,y)
)
.

and consider the Iterated Function System (IFS)

{
X,Wi1i2...in : (i1, i2, . . . in) ∈

n

∏
k=1

ΣNk

}
.

Theorem 2.6. Let ∆ =
{
(x1,i1,x2,i2, . . . ,xn,in ,yi1i2...in) : ik = 0,1, . . . ,Nk;k ∈ Σn

}
be

a prescribed multivariate data set and {K,Wi1i2...in : (i1, i2, . . . , in) ∈ ∏
n
k=1 ΣNk} be

the IFS associated to it, as defined above. Assume that for each (i1, i2, . . . , in) ∈
∏

n
k=1 ΣNk , the map Fi1i2...in satisfy the following matching conditions:

For all ik ∈ intΣNk,0, 1 ≤ k ≤ n, (i1, i2, . . . , in) ∈ ∏
n
k=1 ΣNk and x∗k = u−1

k,ik
(xk,ik) =

u−1
k,ik+1(xk,ik),

Fi1...ik...in(x1, . . . ,xk−1,x∗k ,xk+1, . . .xn,y)

= Fi1...ik+1...in(x1, . . . ,xk−1,x∗k ,xk+1 . . .xn,y),

11



where (x1, . . .xk−1,xk+1 . . . ,xn)∈ ∏
n
j=1, j ̸=k I j and y ∈R. Then there exists a unique

continuous function f̃ : Ω → R interpolating ∆ whose graph is the attractor of the

IFS considered above.

Now, we obtain a parameterized family of fractal functions associated with a
prescribed germ function f by using the idea of multivariate fractal interpolation
demonstrated above. To this end, consider the set

∆ =
{
(x1,i1,x2,i2, . . . ,xn,in) ∈ Ω ⊂ Rn : ik ∈ ΣNk,0, k ∈ Σn

}
,

where xk,0 < x1,k < · · ·< xk,Nk for each k ∈ Σn := {1,2, . . . ,n}. With a slight abuse
of notation, let us write

∆ =
{(

x1,i1, . . . ,xn,in, f (x1,i1, . . . ,xn,in)
)
∈ Ω×R : ik ∈ ΣNk,0, k ∈ Σn

}
.

Choose a function b ∈ C(Ω) such that for all ( j1, j2, . . . , jn) ∈ ∏
n
k=1 ∂ΣNk,0,

b(x1, j1,x2, j2, . . . ,xn, jn) = f (x1, j1,x2, j2, . . . ,xn, jn).

Consider a continuous map α : Ω → R such that |||α|||
∞
< 1. Define

Fi1i2...in
(
x1,x2, . . . ,xn,y

)
= f

(
u1,i1(x1),u2,i2(x2) . . .un,in(xn)

)
+α

(
u1,i1(x1),u2,i2(x2) . . .un,in(xn)

)(
y−b(x1,x2, . . . ,xn)

)
.

The above choice of functions Fi1i2...in in satisfy the constraints required in the
previous theorem. Hence, there exists a unique fractal interpolation function, which
we shall denote by f α

∆,b : ∏
n
k=1 Ik → R, such that it satisfies the self-referential

functional equation

f α
∆,b(X) = f (X)+α(X)

(
( f α

∆,b −b)
(
u−1

i1i2...in(X)
))

,

for all X ∈ ∏
n
k=1 Ik,ik and (i1, i2, . . . , in) ∈ ∏

n
k=1 ΣNk , where X = (x1,x2, . . . ,xn) and

u−1
i1i2...in(X)=

(
u−1

1,i1(x1),u−1
2,i2(x2), . . .u−1

n,in(xn)
)
. We call f α

∆,b : ∏
n
k=1 Ik →R, the mul-

tivariate α-fractal interpolation function corresponding to the seed function f .
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We study the fractal dimension of the graph of f α
∆,b and its fractional integral.

Next, we choose the base function b : Ω → R in the above construction via a
nonlinear operator L : C(Ω)→ C(Ω) defined by b = L( f ). This, as in the earlier
chapters, gives rise to a fractal operator on C(Ω), which is the further topic of study
in this chapter.

2.5 Smoothness Preserving Multivariate Fractal Interpolation Functions

In this chapter, we investigate multivariate FIFs in CM(Ω), the function space
consisting of functions whose all partial derivatives upto order M exist and are
continuous. To this end, let f ∈ CM(Ω) be fixed. Define CM

f (Ω) by

CM
f (Ω) =

{
g ∈ CM(Ω) : Dl(g)(X) = Dl( f )(X) ∀ l with |l| ≤ M

and X ∈ ∂Ω
}
.

We shall consider the space CM(Ω) equipped with the norm ∥ · ∥M,∞, defined by
∥g∥M,∞ = ∑

|l|≤M
∥g∥∞. It is plain to see that the set CM

f (Ω) endowed with the metric

induced by the norm ∥ · ∥M,∞ is a complete metric space.

Now choose the scaling vector α and base function b appearing in the construc-
tion of the multivariate α-fractal functions f α

∆,b corresponding to f ∈ CM(Ω) also
as smooth enough, that is,

1. αi1...in ∈ CM(Ω) for (i1, . . . , in) ∈ ∏
n
k=1 ΣNk .

2. b ∈ CM
f (Ω).

Let us denote

|||α|||M,∞ = max
{∥∥Dl(αi1...in)

∥∥
∞

: |l| ≤ M,(i1 . . . , in) ∈
n

∏
k=1

ΣNk

}
.

Similar to that in the construction of f α
∆,b given in the previous chapter, let us

define an RB type operator Tf on CM
f (Ω) by

Tf (g)(X) = f (X)+αi1...in(X)(g−b)
(
u−1

i1...in(X)
)
,
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for all X ∈ ∏
n
k=1 Iik,k and (i1 . . . in) ∈ ∏

n
k=1 ΣNk . Recall the notation

|a|= min
{
|ak,ik | : ik ∈ ΣNk ,k ∈ Σn

}
.

Theorem 2.7. The map Tf maps CM
f (Ω) into CM

f (Ω) and satisfies the Lipschitz

condition

∥∥Tf (g)−Tf (h)
∥∥

M,∞
≤
( 2
|a|

)nM
|||α|||M,∞∥g−h∥M,∞,

for all g,h ∈ CM
f (Ω). In particular, if

( 2
|a|

)nM
|||α|||M,∞ < 1,

then Tf is a contraction map. Its unique fixed point f α
∆,b ∈ CM

f (Ω) is such that

Dl( f α
∆,b)(X) = Dl( f )(X)+

l

∑
p=0

(
l
p

)
Dl−p(

αi1...in(X)
)
Dp( f α

∆,b −b
)(

u−1
i1...in(X)

)
,

(10)

for all X ∈ ∏
n
k=1 Ik,ik , (i1, . . . , in) ∈ ∏

n
k=1 ΣNk and multi-index l with |l| ≤ M.

In the subsequent parts of the chapter, we shall use the above construction to get a
fractal Hermite interpolant. To this end, we shall first extend the classical bivariate
Hermite interpolation formula presented in [1] to higher dimensions. Further, we
shall discuss some shape preserving approximation aspects of multivariate smooth
FIF.

2.6 Multivariate Fractal Functions in Lebesgue and Sobolev Spaces

In the same spirit as in the previous chapters, we shall construct multivariate α-
fractal functions corresponding to a fixed function, but this time in the function
spaces: (1) Lebesgue space LP(Ω) and (2) Sobolev space WM,P(Ω).

Let n ≥ 2 be an integer and ∆ = {(x1,i1 ,x2,i2, . . . ,xn,in)∈Rn : ik ∈ ΣNk,0; k ∈ Σn}
be such that xk,0 < xk,1 < · · · < xk,Nk for each k ∈ Σn. Note that xk,0 < xk,1 <
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· · · < xk,Nk determines a partition of Ik into subintervals Ik,ik =
[
xk,ik−1,xk,ik

)
for

ik =∈ intΣNk,0 and Ik,Nk =
[
xk,Nk−1,xk,Nk

]
.

It is worth to note that Ik =
Nk⋃

ik=1

Ik,ik for k ∈ Σn, and each node point in the

partition of Ik is exactly in one of the subintervals Ik,ik , ik = 1,2 . . . ,Nk mentioned
above.

For each ik ∈ ΣNk , let uk,ik : Ik → Ik,ik be an affine map of the form

uk,ik(x) = ak,ikx+bk,ik ,

satisfying uk,ik(xk,0) = xk,ik−1 and uk,ik(xk,Nk) = xk,ik if ik is odd,

uk,ik(xk,0) = xk,ik and uk,ik(xk,Nk) = xk,ik−1 if ik is even.

When the interval Ik,ik involved in the definition of affine maps is half-open, the
above equation needs to be interpreted in terms of the one-sided limit. For instance,
when ik ∈ intΣNk,0 is odd, uk,ik(xk,Nk) = xk,ik actually means lim

x→x−k,Nk

uk,ik(x) = xk,ik .

Note that

|uk,ik(x)−uk,ik(x
′)| ≤ γk,ik |x− x′|, ∀ x,x′ ∈ Ik,

for 0 ≤ γk,ik = |ak,ik |< 1. Using the definition of the map uk,ik , one can verify that

u−1
k,ik

(xk,ik) = u−1
k,ik+1(xk,ik),

for all ik ∈ intΣNk,0.

Finally, for each g ∈ LP(Ω), and X = (x1, . . . ,xn) ∈ ∏
n
k=1 Ik,ik , (i1, . . . , in) ∈

∏
n
k=1 ΣNk , we define Tf (g) as

Tf (g)(X) = f (X)+αi1...in(g−b)
(
u−1

i1...in(X)
)
,

where u−1
i1...in(X) =

(
u−1

1,i1(x1), . . . ,u−1
1,i1(xn)

)
, b(̸= f )∈LP(Ω) be arbitrary but fixed,

and αi1...in are real numbers that satisfy certain constraints which will be mentioned
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in the sequel. The
(

∏
n
k=1 Nk

)
-tuple comprised of the real numbers αi1...in is called

the scaling vector or scaling factor and it is denoted by α . We define

|||α|||
∞
= max

{
|αi1...in | : (i1, . . . , in) ∈

n

∏
k=1

ΣNk

}
.

The main objective in this section is to choose the scale vector α and base function
b so that the Read-Bajraktarević (RB) operator Tf is a well-defined map, and, in
fact, Tf is a contraction map on the function LP(Ω) under suitable constraints.

Theorem 2.8. Let f ∈ LP(Ω) for 1 ≤ P ≤ ∞. Then Tf maps LP(Ω) to LP(Ω).

Further, Tf is a contraction map, if
[

∑
Nn
in=1 . . .∑

N1
i1=1(∏

n
k=1 |ak,ik |)|αi1...in|P

] 1
P
< 1, for 1 ≤ P < ∞.

|||α|||
∞
< 1, for P = ∞.

Hence there exists a unique f α
∆,b ∈ LP(Ω) such that

f α
∆,b(X) = f (X)+αi1...in( f α

∆,b −b)
(
u−1

i1...in(X)
)
,

for X ∈ ∏
n
k=1 Ik,ik , and (i1, . . . , in) ∈ ∏

n
k=1 ΣNk .

Similarly we have the following.

Theorem 2.9. Let f ∈WM,P(Ω) for 1 ≤ P ≤ ∞. Suppose that the base function

b ∈WM,P(Ω) and the scaling vector is chosen so that
[

∑
Nn
in=1 . . .∑

N1
i1=1

|αi1...in |
P

∏
n
k=1 |ak,ik |

MP−1

] 1
P
< 1, for 1 ≤ P < ∞.

max{ |αi1...in |
∏

n
k=1 |ak,ik |

M : (i1, . . . , in) ∈ ∏
n
k=1 ΣNk}< 1, for P = ∞.

(11)

Then the RB operator Tf given in (2.6) is a contraction map on WM,P(Ω). Conse-

quently, Tf has a unique fixed point f α
∆,b.

2.7 Fractal Functions in Mixed Norm Spaces

Thus far, our discussion on multivariate fractal functions has been limited to
function spaces essentially endowed with the classical LP– norm. In this chapter,
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we continue this investigation to some mixed norm spaces. We shall also study
the approximation properties of the multivariate Kantorovich operators and their
consequences in the fractal approximation process on mixed Lebesgue spaces.

Let n ≥ 2 be an integer and Ω = [0,1]n. Consider a partition ∆ ={
(x1,i1,x2,i2, . . . ,xn,in) ∈ Rn : ik ∈ ΣNk,0;k ∈ Σn

}
of Ω such that 0 = xk,0 < xk,1 <

· · ·< xk,Nk = 1 for each k ∈ Σn. For each k ∈ Σn 0 = xk,0 < xk,1 < · · ·< xk,Nk = 1
determines a partition of [0,1] into subintervals Ik,ik :=

[
xk,ik−1,xk,ik

)
for ik =

1,2, . . . ,Nk − 1 and Ik,Nk :=
[
xk,Nk−1,xk,Nk

]
. For a fixed f ∈ L

−→
P ([0,1]n) and an

arbitrary g ∈ L
−→
P ([0,1]n), define Tf : [0,1]n → R by

Tf (g)(X) = f (X)+αi1...in
(
g−b

)
(u−1

i1...in(X)) X ∈
n

∏
k=1

Ik,ik ,

where b ∈ L
−→
P ([0,1]n) is fixed and αi1...in ∈ R is chosen so as to satisfy some

bound to be mentioned in the sequel. Let α = (αi1...in) be a (∏n
k=1 Nk)-tuple of real

numbers.

Theorem 2.10. Let
−→
P ∈ [1,∞)n and f ∈ L

−→
P ([0,1]n) and the parameters α, ∆,

and b ∈ L
−→
P ([0,1]n) be fixed. Further, let us assume that the scale vector is chosen

such that

C
−→
P

∆,α :=

[
Nn

∑
in=1

|an,in|

{
Nn−1

∑
in−1=1

|an−1,in−1| . . .

{ N2

∑
i2=1

|a2,i2|
{ N1

∑
i1=1

|αi1...in|
P1 |a1,i1|

}P2
P1
}P3

P2
. . .

} Pn
Pn−1

] 1
Pn

< 1.

Then Tf : L
−→
P ([0,1]n)→ L

−→
P ([0,1]n) is a contraction map. Hence by Banach fixed

point theorem there exists a unique f α
∆,b ∈L

−→
P ([0,1]n) which satisfies the following

self-referential equation

f α
∆,b(X) = f (X)+αi1...in

(
f α
∆,b −b

)
(u−1

i1...in(X)), X ∈
n

∏
k=1

Ik,ik .

Now, let f : [0,1]n →R be a given function and M1, . . . ,Mn be non-negative integers.
For the sake of brevity, let us write M = (M1, . . . ,Mn), the Bernstein-Kantorovich
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polynomial associated with f is defined as

KM ( f )(X) =
M1

∑
i1=0

. . .
Mn

∑
in=0

n

∏
k=1

Pk
Mk,ik (xk)∫ 1

0
. . .

∫ 1

0
f
(

i1 + t1
M1 +1

, . . . ,
in + tn
Mn +1

)
dt1 . . .dtn (12)

Lemma 2.1. Let KM be the Kantorovich operator defined in (12) and f ∈
L
−→
P ([0,1]n). Then KM( f ) ∈ C([0,1]n)⊂ L

−→
P ([0,1]n).

Now, for k = 1,2 . . . ,n, consider ηk : [0,1]n → [0,1] ⊂ R and ξk : [0,1]n →
[0,1]⊂ R are defined by ξk(X) = xk and ηk(X) = x2

k

Lemma 2.2. Let KM be the multivariate Kantorovich operator defined in (12).

Then we have the following

(1) KM(ξ j) =
M j

M j+1ξ j +
1

2(M j+1) .

(2) KM(η j) =
1

(M j+1)2

[
M j

(
M j −1

)
η j +2M jξ j +

1
3

]
As a direct consequence of the above lemma, we have the following corollary.

Corollary 2.1. Let KM be the Kantorovich operator defined in (12). Then we have

the following

(1) ∥KM(ξ j)−ξ j∥∞ → 0 as M j → ∞.

(2) ∥KM(η j)−η j∥∞ → 0 as M j → ∞.

(3) ∥KM(η)−η∥∞ → 0 as M → ∞, where the function, η : [0,1]n → R is defined

by η(X) = ∥X∥2.

In the following theorem, we show that the multiparameter sequence (KM( f ))

converges to f uniformly for all f ∈ C([0,1]n) as M → ∞.

Theorem 2.11. Let f ∈ C([0,1]n), then ∥KM( f )− f∥∞ = 0 as M → ∞

Lemma 2.1 ensures that the Bernstein-Kantorovich operator maps the mixed
Lebesgue space into itself. In the following lemma we prove that KM :
L
−→
P ([0,1]n)→ L

−→
P ([0,1]n) is in fact a bounded operator.
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Lemma 2.3. Let KM : L
−→
P ([0,1]n)→ L

−→
P ([0,1]n) be the Bernstein-Kantorovich

operator as defined above. Then

∥KM( f )∥−→P ≤ ∥ f∥−→P ∀ f ∈ L
−→
P ([0,1]n) .

As in the classical Lebesgue spaces, C([0,1]n) is dense in the mixed norm
Lebesgue space L

−→
P ([0,1]n). We prove this in the following theorem.

Theorem 2.12. Let
−→
P ∈ [1,∞)n. Then C([0,1]n) is dense in L

−→
P ([0,1]n).

Theorem 2.13. Let f ∈ L
−→
P ([0,1]n) and KM be the operator defined as above.

Then KM( f ) converges to f in L
−→
P ([0,1]n).

Using the multiparameter sequence of Bernstein-Kantorovich operators
(KM)M∈Nd constructed above, we shall obtain a fractal approximation process
on the mixed Lebesgue space L

−→
P ([0,1]n) for

−→
P ∈ [1,∞)n. To this end, we select

the base function b : [0,1]n → R involved in the construction of α-fractal func-
tions on L

−→
P ([0,1]n) via the Bernstein-Kantorovich operator KM : L

−→
P ([0,1]n)→

L
−→
P ([0,1]n). To be precise, we take b = KM( f ) and the corresponding α-fractal

function is denoted by f α
∆,KM

. This gives rise to an operator Fα
∆,KM

: L
−→
P ([0,1]n)→

L
−→
P ([0,1]n) , defined by f 7→ f α

∆,KM
, which we call as the Bernstein-Kantorovich

Fractal operator.

Theorem 2.14. Let the parameters α and ∆ be fixed. Suppose f ∈ L
−→
P ([0,1]n) be

arbitrary, then the fractal perturbation Fα
∆,KM

( f ) of f converges to f as M → ∞.

As a straightforward application of the fractal operator on mixed Lebesgue
spaces, we shall construct a Schauder basis consisting of fractal functions for the
mixed Lebesgue spaces L

−→
P ([0,1]n) .

The set of dyadic intervals in [0,1] is defined by

D=

{[
j−1
2m ,

j
2m

)
: 1 ≤ j ≤ 2m,m ≥ 0

}
.

For any I ∈ D, let I0 and I1 denote the left and right halves of I, respectively.
The L∞ - normalized Haar function hI is defined as hI = χI0 −χI1 . The sequence
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(hI)I∈D is known as L∞ - normalized Haar system. Let us define the collection of
dyadic hyper-rectangles in [0,1]n by

Rn =
{
I := I1 × I2 × . . .× In : I1, I2, . . . , In ∈D

}
.

The multiparameter Haar system
{

hI : I ∈ Rn
}

is given by

hI(X) =
n⊗

k=1

hIk(xk), X ∈ [0,1]n..

In [8, Proposition I.1], it is proved that the biparameter Haar system (that is, the
multiparameter Haar system with n = 2) is an unconditional Schauder basis for
mixed Lebesgue space L(P1,P2)([0,1]2), 1 < P1,P2 < ∞. A similar computation
proves that the multiparameter Haar system

{
hI : I ∈ Rn

}
is an unconditional

Schauder basis for mixed Lebesgue space L
−→
P ([0,1]n),

−→
P ∈ (1,∞)n.
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